

Input 40V ~ 160V Output 12V/2.5A 1in.×2in. Industry Standard Size

Contents

Outline Diagram	1
Features	1
Specifications	1
Characteristic Curves	3
Design Considerations	5
Basic Connection	5
Recommended Layout	5
External Capacitance	5
Remote Control	5
Output Voltage Adjust	6
EMC Solution	7
Safety Consideration	7
Thermal Consideration	
Series and Parallel Operation	7
ESD Control	8
Cleaning Notice	8
Delivery Package Information	
Quality Statement	
Contact Information	

Outline Diagram

Specifications

Features

1in. \times 2in.Industry Standard Size (50.8mm \times 25.4mm \times 12.7mm)

Wide Input Voltage (40V~160V)

Positive Logic Control(3.5V to 15V turn on)

Output Voltage Adjust Rang:±10% of the rated output voltage

Output short-circuit protection, hiccup, auto-recovery

High efficiency, 87% typ.(Input 110V, Ionom) 1500Vac Isolation Voltage

Operating Ambient Temperature:-40 to 85 Meets Requirements of Standard EN50155 Application: Rail transit

Pin	Symbol	Function		
1	+Vin	Positive Input		
2	-Vin	Negative Input		
3	CNT	Remote Control Pin		
4	TRIM	Output Voltage Adjust		
5	-Vo	Negative Output		
6	+Vo	12V Positive Output		

Case material: Aluminum shell plastic cover, black

Pins material: Copper with gold plating Notes: all dimensions in mm(inches) X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.010)

Unless otherwise specified, all tests are at room temperature and standard atmosphere, pure resistive load.

Input	Symbol	Min	Тур	Max	Unit	Conditions
Input Voltage	V _{in}	40	110	160	V	_
Input Current	I _{in}	ı	_	0.9	A	$V_{in} = 40V, I_o = 2.5A$
Start-up Delay Time	T_{delay}	ı	8	_	ms	_
Input Idling Current	$I_{in,nl}$	-	_	35	mA	V_{in} =110V , I_O =0A

Page 1 of 8 8/7/2019

Technical Specification V1.0 2019.08 RELS30-110B12 DC/DC Converter

Input 40V ~ 160V Output 12V/2.5A 1in.×2in. Industry Standard Size

Continue

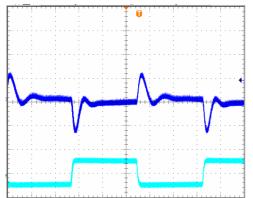
]	Input	Symbol	Min	Тур	Max	Unit	Conditions
Positive	ON	I	3.5	_	15.0	V	Refer to -V _{in} ; Also turn on when CNT floating
Logic Remote	OFF	ı	0	_	1.5	V	Refer to -V _{in}
Control	Current	I	I	_	5.0	mA	CNT source current when turn off
Under Vol	tage Threshold	$V_{\rm UVLO}$	34	_	38	V	_
	tage Protection	$V_{\rm UVLO}$	1	_	2.5	V	_

O	utput	Symbol	Min	Тур	Max	Unit	Conditions	
Outpu	ıt Voltage	V _o	11.88	12.00	12.12	V	_	
Outpu	it Current	Io	0	_	2.5	A	_	
	oltage Adjust ange	V_{trim}	10.8	-	13.2	V	I₀≤2.5A ,P₀≤30W	
Line R	Regulation	S_{V}	ı	-	±0.2	%Vo	V_{in} :40V~160V, I_0 =2.5A	
Load F	Regulation	S_{I}	ı	-	±0.5	%Vo	$V_{in}=110V, I_o:0A\sim2.5A$	
	ent Protection evel	$I_{o,lim}$	2.75	1	5	A	_	
Output	t Over-shoot	V_{TO}	0	-	1.2	V	V_{in} =110V, $I_{o,max}$	
_	Short-circuit tection		Hiccup mode, auto-recovery					
	to Peak and Noise	V_{pp}	1	I	120	mV	20MHz bandwidth	
Ris	e Time	T_{rise}	1	5	-	ms	I _{O,max} pure resistive load	
Capacitive	e Load Range	Co	100	-	1000	μF	_	
Load	Recovery Time	t _{tr}	_	_	400	μs	25%~50%~25%I _{o,max} or 50%~75%~50%I _{o,max} ;	
Transient	Voltage Deviation	V_{tr}	-	_	±600	mV	0.1A/μs	

General	Symbol	Min	Тур	Max	Unit	Condition	ns
Efficiency	η	-	87	_	%	V _{in} =110V, Io=	$I_{O,max}$
Switching frequency	f_s	-	300	-	kHz	_	
Isolation Resistance	R _{iso}	50	_	-	ΜΩ	_	
						Input to Output	Leakag
Isolation Voltage	V _{iso}	1500	_	_	V _{ac}	Input to Case	Current
						Output to Casee	5mA
Shock And Vibration	Meets EN50155						
MTBF	_	1	2×10 ⁶	-	h	BELLCORE T	R-332
Operating Case	_	-40	_	+105		See the Natrual	C
Temperature	_	-40	_	1103		Derating	,

Page 2 of 8 8/7/2019

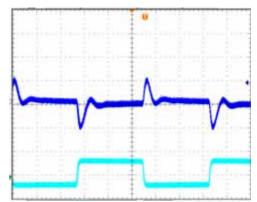
Input 40V ~ 160V Output 12V/2.5A 1in.×2in. Industry Standard Size


Continue

General	Symbol	Min	Тур	Max	Unit	Conditions
Operating Ambient Temperature	-	-40	-	+85		See the Natrual Cooling Derating
Storage Temperature	-	-55	_	+125		_
Temperature Coefficient	S_{T}	-	-	±0.02	%/	_
	$R_{\theta CA}$	-	16.29	_	/W	Natural convection without heatsink
Thermal resistance	$R_{\theta CA}$	I	13.66	_	/W	100LFM convection without heatsink
	$R_{\theta CA}$	I	10.93	-	/W	200LFM convection without heatsink
Hand Soldering	Maximum soldering Temperature < 425 , and duration < 5s					
Wave Soldering	Maximum soldering Temperature < 255 , and duration < 10s					, and duration < 10s
Weight	_	-	30	_	g	_

EMC Specifications		Level	
EMI Conducted Emission	EN55032	(See Page 7)	Class A
Surge Immunity	IEC/EN61000-4-5 GB/T 17626.5	line to line($\pm 1 \text{kV}/2\Omega$); line to ground($\pm 2 \text{kV}/12\Omega$) (See Page 7)	В
Fast Transient	IEC/EN61000-4-4 GB/T 17626.4	±2kV(5/50ns, 5kHz) (See Page 7)	A

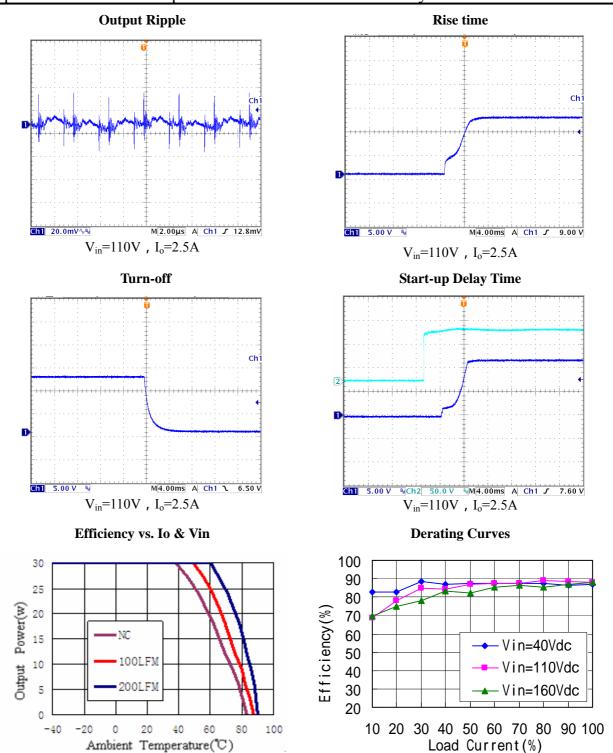
Characteristic Curves



Load change: 25%~ 50%~25%Io,max., 0.1A/μs ,Vin=110V

Trace1: 100mV/div Trace2: 0.6A/div Timescale:400µs /div

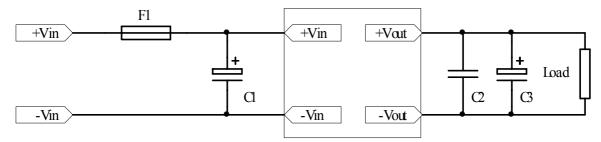
Load Transient Response


Load change: 50%~ 75%~25% Io,max., 0.1A/μs ,Vin=110V

Trace1: 100m V/div Trace2:0.6A/div Timescale: 400µs /div

Page 3 of 8

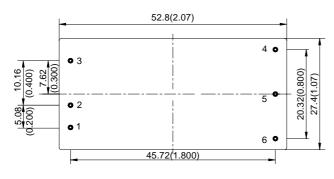
Input $40V \sim 160V$ Output 12V/2.5A 1in.×2in. Industry Standard Size


Page 4 of 8 8/7/2019

Input 40V ~ 160V Output 12V/2.5A 1in.×2in. Industry Standard Size

Design Considerations

Basic Connection



Notes: Please see the application information followed for the further information.

Parameter declaration:

Part No.	Model	Part No.	Model
F1	3A	C2	1μF
C1	47μF	C3	100μF

Recommended Layout

NO.	Recommendation & Notes			
Pad	Pad holes 1.2mm, pad diameter			
Design	including hole:2.5mm			
Mounting	Heatsink face up, for natural			
Direction	convection			
Sofoty	Isolated Converters, care to the			
Safety	spacing between input and output			
	The Vin(-) and Vo(-) planes			
	should be placed under of the			
Electrical	converter separately. Avoid			
Eleculcai	routing sensitive signal or high			
	disturbance AC signal under the			
	converter			

External Capacitance

Unless special purpose (i.e. prolonging hold-up time, input impedance matching), the recommended input filter's capacitance ranges $47\mu F$ to $220\mu F$, which not only offers a stable system, and reduces the cost, but also lessens the inrush current when the power supplies.

When larger capacitance is required, a circuit of suppressing the inrush current is recommended when the regulator start-up and a discharge circuit is recommended when the output dropped, ensuring the reliability and safety of other equipments in the system.

Remote Control

Remote control can be offered by setting right control voltage level (refer to -Vin pin) to CNT pin. Positive Logic Control: When the level is higher than 3.5V or be left floating, the converter will be on. When the level is lower than 1.5V, the converter will be off.

A CNT

-Vin

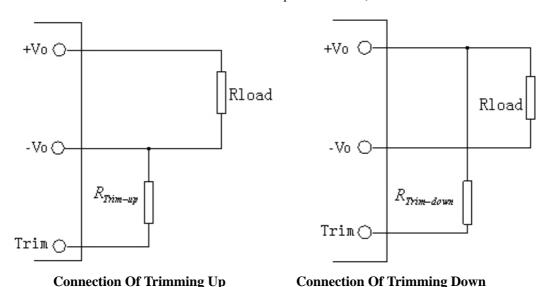
Logic comparator

Internal circuit diagram for positive logic control

RELS30-110B12 is provided with positive logic remote. The

Page 5 of 8 8/7/2019

Input 40V ~ 160V Output 12V/2.5A 1in.×2in. Industry Standard Size


circuit diagram is shown as "Internal circuit diagram for positive logic control". When low level applied, the CNT source current is less than 1mA, due to VD1 is signal diode, and the logic comparator is semiconductor integrated chip with low resistance to surge. Care should be taken to prevent CNT from surge, A TVS should be used in some cases.

In some applications, extra controls will be designed for the converter in user's PCB, such as output short circuit protection, over voltage protection, under voltage protection, and so on, remote control will give you help. The controls can be achieved by external circuit applied to the CNT pin.

In some applications it is necessary to have a precise turn on and turn off level, or the level which can be received has a very narrow range, (such as turn-on between 5.0V-5.5V), the aux. circuit will be required. Please contact us for more information.

Output Voltage Adjust

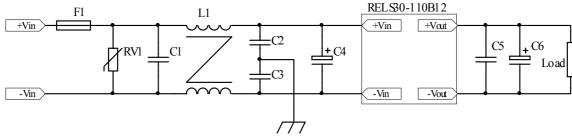
The converters have an Output Voltage adjust pin (Trim). This pin can be used to adjust the output voltage above or below Output voltage initial setting. When increasing the output voltage, the voltage at the output pins (including any remote sense offset) must be kept below the maximum output adjust range, or the characteristics will not be assured in compliant with the specification, even the over voltage protection may be triggered. Also note that at increased output voltages the maximum power rating of the converter 30W remains the same, and the output current capability will decrease correspondingly, at decrease output voltages the maximum current should not exceed 2.5A. When the trim pin is not used, it should be floated.

External circuit is connected as the figure shown, the resistance is calculated as the formula below, please note that the formula will be invalid when $R_{Trim-up}/R_{Trim-down}$ are used simultaneously, users adjust the value based on the resistance applied.

Page 6 of 8 8/7/2019

Input 40V ~ 160V Output 12V/2.5A 1in.×2in. Industry Standard Size

Resistance for trimming up:
$$R_{Trim-up} = (\frac{23.53}{\Delta V} - 15)(k\Omega)$$


Resistance for trimming down:
$$R_{Trim-down} = (\frac{90.5}{\Lambda V} - 24.41)(k\Omega)$$

Vo: rated output voltage V: The output voltage change, Units: V;

 $R_{Trim-up}/R_{Trim-down}$: Resistance for trimming up or down, Units: k Ω .

EMC Solution

Recommendation circuit for EMI Conducted emission, Fast transient/burst immunity, Surge immunity.

Parameter declaration:

Part No.	Components	Part No.	Components
F1	3A	C2/C3	1nF/250VAC
L1	2.5mH	C4	220 µ F
RV1	221KD14	C5	1 µ F
C1	0.33 µ F/275VAC	C6	100 µ F

Safety Consideration

To avoiding fire and be protected when short circuit occurred, it is recommended that a fast blow fuse with rating 2.5 to 4 times of converter's continuous input peak current is used in series at the input terminal. (Inrush current suppression circuit is required for greater filter capacitance at input terminal, or it will result in the misoperation of the fuse).

Thermal Consideration

The converters operate in a variety of thermal environments, however, sufficient cooling should be provided to ensure reliable operation of the unit. Heat is removed by conduction, convection and radiation to the surrounding environment.

When case temperature is higher than the permitted operating, the derating curves should be referred or external heat dissipation measures. Forced air cooling or heatsink, should be used. The air tunnel should be considered for forced air cooling, to avoid heated air be hindered or forming swirl; when heatsink used, it should be attached the converter closely, through double-side thermal conductivity insulation adhesive or thermal conductivity silicone for heat exchange.

Series and Parallel Operation

The converters should not be paralleled directly to increase power, but they can be paralleled each other

Page 7 of 8 8/7/2019

Input 40V ~ 160V Output 12V/2.5A 1in.×2in. Industry Standard Size

through o-ring switches or diodes. Make sure that every converter's maximum load current should not exceed the rated current at anytime if they are paralleled without using external current sharing circuits. The converters can operate in series. To prevent against start-up failure due to start up time difference, SBD with low voltage difference can be paralleled at the output pins (SBD negative terminal connect to the positive pin of the output) for each converter.

ESD Control

The converters are processed and manufactured in an ESD controlled environment and supplied in conductive packaging to prevent ESD damage from occurring before or during shipping. It is essential that they are unpacked and handled using an ESD control procedures. Failure to do so affects the lifetime of the converter.

Cleaning Notice

The converter case is not a hermetically-sealed construction, a sufficient drying process is required after the converter cleaning, make sure the liquid congregated is removed, or it will damage the converter or degradation of performance.

After surface treatment, the appearance of the converter may be affected by the organic solvent, protection measures should be taken before cleaning when appearance is concerned.

Delivery Package Information

Package material is multiple wall corrugated with more than $10^{12} \Omega$ surface resistance;Internal material is anti-static foam with more than $10^{12} \Omega$ surface resistance.. Tray capacity: $2 \times 16 = 32$ PCS/box, Tray weight: 1.03kg; Carton capacity: $8 \times 32 = 256$ PCS, Carton weight:9kg.

Quality Statement

The converters are manufactured in accordance with ISO9001 system requirements, and are monitored 100% by auto-testing system, 100% burn in.

The warranty for the converters is 5-year.

Contact Information

Anhui Hesion Trading Co.,Ltd. Beijing Yihongtai Technology Dev.Co.,Ltd

TEL: +86-551-65369069,65369067

FAX:+86-551-65369070 Email: <u>alecz@ahhesion.com</u> Backup:<u>alecz@126.com</u>

Page 8 of 8 8/7/2019